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Evolution of locally unstable shear flow near a wall 
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An important phase of turbulence production in the flow past a wall occurs with the 
intermittent inflexional instability of the streamwise current. But according to a 
linearized inviscid calculation this instability (Kelvin-Helmholtz) can be reduced or 
eliminated by the presence of a (slippery) wall. Attention is therefore directed to the 
temporal evolution of a finite-amplitude patch of inflected fluid, i.e. one that is 
localized in the downstream direction. The model has piecewise uniform vorticity , 
and the contour-dynamical method is used. Numerical integrations show that 
sufficiently wide initial patches will eject slow fluid near the wall until it comes into 
close contact with the free stream, whereupon the ejection is deflected around a large 
eddy which is surrounded by a stable shear flow. The parametric regime in which this 
kind of finite instability occurs is sketched, and the Reynolds stress is computed. The 
initial condition assumed in this calculation depends on the prior existence and 
intensification of a local spanwise circulation, and this process is briefly discussed 
using a separate two-dimensional calculation. This shows that widely separated 
vorticity isopleths tend to completely merge, implying that such fronts in a real 
fluid may only be viscously limited. The analogous process of potential vorticity 
frontogenesis may be important in oceanic coastal currents. 

1. Introduction 
Although fully developed turbulent flows must be regarded as stable in the mean 

(Reynolds & Tiedermann 1967), the classical theory of laminar instability captures 
a key process which occurs intermittently in space-time. In  the flow of a 
homogeneous fluid past a wall, for example, patches of inflexionally unstable flow 
associated with large Reynolds stresses develop as a result of local spanwise 
circulations (Blackwelder & Kaplan 1976 ; Landahl 1975). An oceanographic 
illustration of the development of a local instability is given by Send (1988), who 
attributes the formation of a single large-scale coastal eddy to an isolated region of 
barotropic instability. It appears that the ever-present large-amplitude disturbances 
in fully developed laboratory or geophysical flow evolve into locally unstable patches 
in which one or more eddies develop, and this process is addressed herein. 

The simplest calculation of an inflexional instability occurs in the Kelvin- 
Helmholtz model, consisting of a uniform vorticity layer surrounded by two semi- 
infinite irrotational layers. Infinitesimal-amplitude disturbances with wavelengths 
larger than a critical value amplify with time, ultimately concentrating the vorticity 
into discrete ‘cores’ (Pozrikidis & Higdon 1985). Let us note that this drastic 
modification of the laminar shear layer is the way in which the free shear layer 
achieves a new equilibrium state. 

The nature of the equilibration process is expected to be different when a wall 
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FIGURE 1 .  (a )  Schematic diagram of the initial state in a two-dimensional inviscid shear flow whose 
profile is inflected in the patch of width W,. Low anticyclonic vorticity and relatively low-velocity 
fluid lie beneath the lower interface L,(z,O), and low-vorticity fluid lies above L,(s,O). ( b )  
Schematic diagram of the two interfacial height,s (R ,  L) used in the non-dimensional analysis (I 2 )  
with the vorticity (cyclonic) of the middle layer being + 1. 

limits the thickness of the lowcst layer, because the amplifying wave will remove this 
fluid before producing drastic changes in the overlying shear layer. The point of 
departure for our discussion of this effect is the linear stability problem (cf. the 
Appendix) for a laminar flow with piecewise uniform vorticity. This calculation 
shows that an inflected shear flow becomes more stable as the ratio of the width of 
the lower layer to the overlying shear layer decreases. 

Our local instability model (figure 1 a) differs from the preceeding one since it is not 
a parallel flow. At t = 0 we have an irrotational patch of maximum height W, and 
finite width W, resting on the wall. This patch perturbs an otherwise stable shear 
flow, viz. that  which exists at x = +_ 03. Thus a vorticity extremum exists over the 
patch, and the downstream velocity U * ( x ,  y, t )  has an inflected profile in part of this 
region. How large must (W,, W,) be in order that high-momentum fluid be brought 
into close contact with the wall, and low-momentum fluid in the patch be brought 
into close contact with the free stream ? 

2. Formulation of the problem 
The equations for a piecewise uniform vorticity flow (figure l a )  will be non- 

dimensionalized using the magnitude of the middle-layer vorticity as the reciprocal 
time unit, and by using H ,  as the length unit (except where otherwise stated). The 
ratio of these units gives the velocity unit, and thus the non-dimensional stream 
function $ satisfies V'$ = - 1 in the anticyclonic middle layer of figure 1 (a) ,  or 
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Vz$ = + 1 in the cyclonic middle layer of the schematic diagram figure 1 (b). It is 
convenient to use the latter sign for the development in this section, and the sign will 
be reversed later for the anticyclonic case (figure 1 a).  The non-dimensional velocities 
are: v = dy/dt = $x, u = dx/dt = -$'y. 

In  figure 1 ( b )  R(x, t) denotes the non-dimensional height of the upper interface a t  
any t ,  and L(x,  t )  is the height of the lower interface. Knowing these heights we can 
compute (u, v)  from Poisson's equation by regarding the left-hand domain in figure 
1 (b) as the sum of the two right-hand domains, having vorticities as indicated. Let 
kL, $R, denote stream functions associated with each of the domains, i.e. 

The boundary conditions in a coordinate system moving with the fluid a t  y = co 
are : $Jx, co, t) = 0, $Jx, 0, t )  = 0, and the same boundary conditions are imposed on 
$R,$L. One may regard the right-hand sides of (2.1) as the sum of elementary 
vortices of equal strength, each occupying a small area dCd7, each producing a 
circularly symmetric logarithmic stream function, and each associated with an image 
(to satisfy the boundary condition). Summing these elementary responses gives the 

( 2 . 2 ~ )  

where the &integration extends over all values of x for which either R(x,t) or 
L(x ,  t )  are non-zero. On differentiating these to obtain the velocities, we get 

and a similar expression is obtained for + a$L/ay, with L(& t )  replacing R(fl, t) in 
(2.3). These two expressions are subtracted to obtain u(x, y, t ) ,  the result is evaluated 
at y = R(x, t )  and y = L(x,  t ) ,  and thus we obtain the Lagrangian contour velocities 
dxR/dt, dxL/dt : 

4a dx 
at 

= 4n u(x, R(x, t ) ,  t )  
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For the v-component of velocity we get (Stern & Pratt  1985) 

and a similar expression for 3$L/llx with L ( f ,  t )  replacing R( f ,  t). Subtracting these 
expressions gives the total velocities : 

These four Lagrangian integro-differential equations (2.4a, b ) ,  (2.6a, b )  are valid 
even if (R ,  L) are multivalued functions of x,  in which case the integrals are contour 
integrals taken along the respective interfaces, and with aR/afdf = dR, aL/afdf = 
dL. In figure 1 (a)  there is a ‘nose point’ and a ‘rear point ’ a t  which L, = 0. In the 
notation of figure 1 ( b ) ,  this becomes 

and the integrals along the lower contour are to  be taken between xnose and x,,,, 
(whereas the integrals along the upper contour extend from - 00 to + 00). From 
(2.4b) the velocity of the nose point is 

(2.8) 

Let us take note of the asymptotic limit W,+O. To obtain the leading term in 
(2.6a), we set L = 0, R = 1 where these terms appear undifferentiated, and this 
results in a linear equation for 471 dR/dt = 47t aR/at (since u = dxR/dt is equal to zero 
to first order). This shows that the upper interfacial disturbance disperses like an 
infinitesimal perturbation on the stable shear flow at x = - m. Therefore, at a fixed 
2 = O( l ) ,  R(x, t )  - 1 will ultimately decrease to zero. I n  order to obtain L(x, t )  when 
W,/H,+O, we rescale so that W, = max (L,(x,O)) (figure l a )  is the new length unit. 
Then the velocities on L induced by the R-disturbanc? are exponentially small 
[O(e-Ho’wl)] and negligible compared with the self-interaction velocities associated 
with L. This means that the lower interface, now at O(1) distance from the wall, 
‘sees’ an upstream flow having uniform shear from y = 0 to y = 00. The resulting 
nonlinear calculation (see 93) for the lower interface will exhibit changes on a long 
timescale O[W2/U( W,)] --f 00 compared with the dispersion time of the upper-level 
disturbance. 

Another interesting limit of (2.4)-(2.6) occurs when the finite variations in R > 0 
and L > 0 occur slowly with x, in which case we set R(f, t)  x R(x,t)  and L ( f , t )  x 
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L(x, t ) .  Using the fact that the definite integral of In ( Z 2  + a2/Z2 + b2)  from 2 = - 00 to 
2 = + 00 equals 27c(lal--lbl) we get 

These long wave equations can be obtained by an elementary calculation using the 
mass continuity and au2/ay2 = 0, piecewise. 

The hyperbolic equation ( 2 . 9 ~ )  implies that the local separation between the 
interfaces remains constant relative to an observer moving with a constant speed 
M(x, 0). Therefore, if M ( x ,  0) decreases with x (in some region), then our observer will 
see dM/ax approach -00 as a ‘shock’ tends to form. Equation (2 .96)  then implies 
that the value of L a t  the shock will increase towards + 00. Since the long-wave 
solutions of (2 .9)  are readily obtained and almost always give rise to much smaller 
scales, we may turn immediately to initial states whose downstream scale is not large 
compared with the thickness of the shear layer. Furthermore, attention is directed 
to the most interesting case in which aM(x,O)/ax = 0 (since the long-wave theory 
implies ‘nothing’, will happen then). This is the reason for choosing a uniform initial 
thickness (H, )  for the finite vorticity layer in figure 1 (a ) .  

A verification and understanding of the numerical calculations to be presented in 
the following sections will be facilitated by the following analytical results. 

2.1. The initial velocities produced by interfaces having the form of step functions 

L-, x < o  
R(x) = 

{L,, x > O ’  
L(x) = (2.10) 

(vorticity is positive as in figure 1 b).  For this calculation the thickness of the shear 
layer on the downstream side of the step provides the length unit. The integrals for 
v , u  at x = 0 may easily be computed for (2.10), and the results are 

271 v(0, y) = (1 + L, - y) In 11 + L, - yI - (R- -y) In IR- -yI - (1 + L, + y) In (1 + L, + y) 
+ (R- + y) In (R- + y) - (L,  - y) In IL, - yI + (L- -y) In IL- -yI 

+ (L,  + y) ln (L,  + y) - (L- + y) In (L- + y), (2.11 a )  

4 ~ ( 0 ,  y) = 1y-R-I - 1y-L-I +K -L- + 1 + Iy- 1 - L+I - ly-L+I. (2.1lb) 

From this we see that the nose velocity is 

u(0, L-) = ill+ R- - L J ,  ( 2 . 1 2 ~ )  

and if R- > L, > L-, then the velocity a t  the top of this step is 

u(0, L,) = t (  1 + R- - L,) < u(0, L-). (2.12b) 

Equations (2.12) imply that the face of the lower step will tend to tilt ‘upstream’ 
as time increases, and that L(x, t )  tends toward a multivalued function of x. If the 
vorticity in the shear layer is negative the signs of the velocity must be reversed, in 
which case the slope of the face of the step decreases as times increase. 

2.2.  The vortex anomaly concept 
If the total velocity field (u, v)  is formally decomposed into the sum of the upstream 
velocity U(y) plus a residual (u’,v), then the total vorticity 5 equals the sum of the 
upstream vorticity plus a ‘vorticity anomaly’ c. In figure 1 (a )  these anomalies 



84 M .  E .  Stern 

are anticyclonic (c < 0) in the area bounded by the upper interface and the line 
y = H,. These anomalies should induce upward velocities near x = 0, y = R, whereas 
downward velocities (w < 0) should be induced near x = W,. (Although the image 
vortices tend to produce opposite velocities, they are further away from the upper 
interface and should not change the qualitative conclusion.) The irrotational fluid 
underneath the L, interface contains cyclonic anomalies, which should produce 
downward velocities near the nose point and upward velocities near the rear point, 
thereby increasing max ( L )  with time. The total motion of any point is obtained by 
adding the velocity anomalies (u', v) to the undisturbed shear flow U(y) a t  the point 

2.3. The semi-infinite disturbance 

For figure i (a )  the vorticity of the shear layer is negative, so that we must reverse 
the signs of the velocities in (2.4a, b) and (2 .6a,  b) ,  and then the vertical velocity on 
the lower interface becomes 

y = L,. 

The last term may be called the self-interaction velocity, the preceeding term may 
be called the mutual-interaction velocity. We now consider the values of these when 
W2 = co (in figure 1 a) ,  when L,(x, 0 )  increases monotonically from x = 0 to x = b,  and 
when L,(x, 0) = WJH,  for x 2 b. If R(x ,  0 )  is constant for all x, then the mutual- 
interaction integral vanishes, and the self-interaction term gives w[x, L(x,  O)] < 0 a t  
all x. Now consider what happens when (as in figure 1 a )  R(x ,  0 )  = 1 +L(x,  O ) ,  and let 
H denote the non-dimensional value of W,. Then 

where 

G ,  = ( x - ~ ) 2 + [ i + L ( [ ) ] 2 + H 2  = O(X'),  G, = ( x - ~ [ ) ~ + L ~ ( ~ ) + H ~  = 012'). 

(2.13) 

and these positive velocities at x + b are due to the mutual-interaction term, since 
the self-interaction term is negative. The mutual-interaction term should therefore 
induce a ridge [max (L )  (x, t )  > HI at finite x. 

H i3L H 2  It follows that 
lim v(x ,  L )  = - dt- = -++( x - 3, 
X 4 - m  nx2 J, a t  71x2 

2.4. The momentum transport for an isolated disturbance 

It is well known (and easily shown) that the horizontally averaged vorticity 
transport for any continuous velocity field equals -3m/ay, where m is the 
upward transport of momentum. For the case of figure 1 ( a )  where the vorticity is 
negative, the total integrated momentum transport is then 

IMT = som dy rCC dxuw = J: dy rCC dy(yvg) = ( -  1) is,,,, ywdxdy, (2.14) 
-m -02 
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where the domain S corresponds to the entire shear layer having vorticity = - 1. S 
is bounded above by R, bounded below by L, and may be bounded on the sides 
(x = f co) by oblique straight lines that move with the laminar shear flow in those 
regions. It then follows that the Lagrangian time derivative in v = dy/dt may be 
commuted with the integrals to obtain 

where &(t)  is the fluid area bounded above by L(x, t), and D(t) is the sum of the areas 
S(t) and &(t). Thus we have 

-6(IMT) = -- [R3(x, t)-  11 dx- L3(2, t)  d~ , 
dt [I S l  (2.15) 

where the ( -  1) has been added to the integrand to make the first contour integral 
convergent, 

If there is no interface above L, (i.e. H ,  = 03 in figure la) then 6‘ = 0 outside &(t). 
Since = 0. It follows that the 
integral of v inside &(t) vanishes. Therefore the integrated y in &(t) or the integrated 
L;(x, t )  is an invariant, as well as the integrated L,. 

= 0, v(x, 03,  t)  = 0 we have 2 = 0, and 

3. Numerical calculations 
Equations (2.4), (2.6) were solved numerically by introducing N ,  Lagrangian 

points on the lower contour, N ,  on the upper contour, and by using a trapezoidal 
approximation to evaluate the integrals between successive points. The small 
interval surrounding the logarithmic singularity was excluded here, and accounted 
for by means of a separate analytic approximation (see Stern & Pratt  (1985) for 
further details). A separate calculation for the nose point (2.8) and the ‘rear point ’ 
(figure 1) was also used. 

Since the Lagrangian points are only placed in the ‘interior’ region x, < x < x, 
where v is found to be non-negligible, i t  is necessary to take account (in ( 2 . 4 ~ ’  b ) )  of 
the contribution to u of the exterior regions (extending to x = 03) where R and/or 
L are constant. For example, if x, is the smallest Lagrangian abscissa on the upper 
interface, then the contribution of the ‘left-wing’ region - 03 < f [  < x, to the 
u-velocity a t  distant point (x 9 2,) involves terms of the form 

where (a, b )  are independent of f [  and depend on R( - 00, t), L(x, t ) ,  R(x, t). A similar 
approximation was used to compute the contribution of the ‘right wing’ (beyond the 
last point x,) to the velocity a t  x 4 x,. The wing corrections (3.1) are not applied to 
points x too close to the last one (e.g. those with x,-x < 3). These points lie on a 
horizontal portion of the interface, and consequently they were moved with the 
undisturbed velocity on the interface. If points near the nose or rear of the lower 
interface moved upwards, additional points were inserted a t  each time to maintain 
adequate spatial resolution, but when the nose moved downwards towards L = 0, it 
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was unnecessary to  do this since there was very little fluid below these L-values. 
When necessary new Lagrangian points were also inserted (or removed) a t  the ends 
of the R-interface to maintain resolution. The 4N,(t) x N,( t )  ordinary differential 
equations ((2.4), (2.6)) were integrated using a second-order Runge-Kutta approxi- 
mation with a time step T = 0.1 (except for figure 13), and with various suitable 
choices of the initial point separations xi -xiPl. Over long time intervals, ‘surgery ’ 
had to be performed, by either removing excessively close interior points or by 
inserting points to sparse regions, to  avoid ‘malpractice suits ’ (especially because an 
old-fashioned PC was used)! Each ‘post-surgery ’ calculation overlapped the pre- 
surgery one, thereby providing a check against pathological developments in the 
operation. These calculations appear to be quite robust, judging by comparison of 
results with earlier runs using wider point separation. 

Preliminary tests of the numerical program were first made using a cyclonic shear 
layer with the initial conditions 

R(x,O) = l + H , ,  J 
and with u(x, co) = 0. One might think of this as a stable coastal current a t  x = - co 
which decreases linearly to zero as y increases from zero to 1+H, ,  and which 
converges on a relatively slow downstream current. At x = + 03, this current has 
velocity u = 1 from y = 0 to  y = H,,  and then u decreases linearly to  ‘zero’ a t  
y = 1 + H , .  Since the upstream basic flow has cyclonic vorticity, there are 
anticyclonic anomalies underneath L(x ,  t )  which will induce upward velocities near 
the nose. This agrees with the quantitative result ( 2 . 1 1 ~ )  which holds when R-t 0. 
For the latter case a run of our numerical program gave initial velocities with errors 
of 1 YO or less (due mainly to the finite interval of discretization). For small B, (2.12) 
suggests an initial steepening of the nose of the front. Figure 2 confirms this for 
B = 0.5, H ,  = 0.5, and shows L(x, t )  becoming multivalued after the initial interval 
(0 < t < 3) of nose steepening. We Sound that a t  t = 0,3 ,9  the nose velocity 
(equation (2.8) was 1.41, 1.20, 1.08 respectively. By comparing these values 
with u( - 00, 0, t )  = 1.5, u( + 00, 0, t )  = 1.0, we see that particles near the wall are 
decelerated as they approach the nose, and then they are deflected backwards in the 
plume ( t  = 9) produced by the downstream convergence. But the rate of increase of 
area in the multivalued plume eventually decreases with t because the nose velocity 
approaches the uniform velocity of the irrotat,ional wall layer at x = + 00. Note that 
despite the infected velocity profiles at x > 0 there is very little displacement at 
t = 9 of the upper interface, and this result is remarkably different from the following 
calculation. 

We now consider the case in which a fast anticyclonic shear layer a t  x = - co 
converges on a slow current (at x = + co), such as occurs in figure 1 (a) when 
W, = co and u( - c o , O , t )  = 0 (now the coordinate system moves with the wall 
velocity a t  x = - 00). For the initial condition 

l - e P Z ,  x 2 0 
L(x ,  0) = H ,  

R(x, 0) = 1 +L(x, 0) 
(3.3) 

(anticyclonic shear layer) the basic velocity a t  x = - co increases linearly from zero 
a t  y = 0 to u = 1 at y = 1, and then remains constant a t  y 2 1. At x = +a, u = 0 
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L 

FIGURE 2. The evolution of a ‘fast coastal current’ (at z = - 00) converging on a relatively slow 
one (at z = + 00). The upper interface separating the irrotational fluid from the cyclonic shearlayer 
is initially horizontal. The initial shape of the lower interface separating the shear layer from the 
irrotational wall layer is given by (3.2). The origin (z = 0) of the coordinate system moves with the 
nose point. At t = 9 there are N ,  = 93 points on the lower interface and N ,  = 52 points on the upper 
one. The scale for the ordinate (labelled L,  R in the figures) is the same for the two interfaces. 

from y = 0 to y = H,, and then u increases linearly to u = 1 a t  y = 1 +H, .  Thus at 
any y we have relatively slow flow at the downstream end. 

The numerical results for H ,  = 0.50 (figure 3 )  are displayed in a coordinate system 
moving with the nose point. At t = 0 the velocity of this relative to the velocity a t  
(x = -00, y = 0) is -0.13, and the velocity a t  (x = 1.95, y = 0.428) is -0.5 relative 
to the velocity at (x = 00, y = 0.428). (These negative velocities may be rationalized 
by referring to the calculation (2.12b) for a ‘step-L’, and by using the appropriate 
sign for g.) Figure 3 verifies that the cyclonic anomalies under L are dominant in 
producing downward displacements a t  the nose of L, and the ridge formation further 
downstream is explained by (2.13). Mass is therefore displaced from under the nose 
region into the lower ridge. The ridge formation on the upper interface a t  t = 4 is 
explained by the dominance of the anticyclonic anomalies underneath R. In  the early 
stages (figure 3 a )  the relatively rapid downstream propagation of the upper ridge is 
expected because of the greater mean speed there. Thus the minimum thickness of 
the finite vorticity layer decreases, and on the basis of the linear theory (see the 
Appendix) we expect the short-wavelength ridges to amplify along with phase 
locking (equal phase speeds). This occurs with the upper ridge located further 
downstream than the lower ridge. Then it is easy to see that the cyclonic anomalies 
under the L-ridge induce upward motion in the R-ridge, the anticyclonic anomalies 
under the R-ridge induced upward motion in the trailing L-ridge, and thus we obtain 
( t  2 10) the amplification of both ridges. Of course dispersion also occurs, and this 
leads to the downstream troughs (t  = 16). The downward displacement of the R- 
trough exceeds that of the L-trough because the latter is inhibited by the wall (figures 
3b, 3 c ) .  This is a key phase of the process because fluid from the high-velocity region 
above the inflexion is transferred to the near-wall region. The formation of the large 
anticyclonic eddy (note the vertical exaggeration) is completed by the slow fluid near 
the wall being ejected to large y and wound around the perimeter of the eddy core. 
It also appears (figure 3c) that a second eddy will eventually form downstream of the 
first one. Similar effects are produced on a longer timescale when H ,  is reduced by 
half (figure 4). Although velocity reversals relative to u( - m,O, t )  occur in these large 
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FIGURE 3. The evolution of a local instability from a locally stable region for the initial conditions 
in (3.3). (a) The early stage showing the phase locking and amplification of the ridges on the two 
interfaces. (6) Note the amplifying trough at t = 16, a t  which time N, = 127 and N ,  = 173. (c) The 
later stage in which an anticyclonic eddy forms. (Note the scales and the vertical exaggeration.) A t  
t = 21,N, = 154,N, = 198. 
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FIGURE 4. Same as figure 3 except H, = 0.25. On the lower interface at t = 27, min(L) is at 
x = 16.6. At t = 33 ,N ,  = 226,N,  = 259, but the last Lagrangian points have been omitted. Also 
the points near 5 = 0 do not appear because their ordinate is very small. 

eddies, one must remember to associate our y = 0 level with some height above the 
viscously dominated region of a fully turbulent wall flow. 

The foregoing calculations correspond to W, = GO in figure 1 (a), and we now 
consider the case of finite W, as given by the initial condition 

L(x, 0) = H ,  2- COS~U(X/X, -  l),  0 < x < 2x, 
x < 2x,, (3.4) 

x < o  I 6: 
R(x, 0) = 1 + L(x, O ) ,  
cosha = 2 

(anticyclonic shear layer). 
In  this case the upstream (x = - GO) and downstream (x = GO) profiles are identical 

(and the same as the upstream flow in the previous case). But now there is a compact 
region of slow (irrotational) fluid between the nose point (x = 0) and the rear point 
(x = 22,). When H ,  = 0.5, x, = 5 the evolution (figure 5) is similar to that obtained 
for (3.3) with H, = 0.5, insofar as a large anticyclonic eddy forms which transports 
upper-layer fluid to  the wall and transports lower-layer fluid to large y. Relative to  
x = - co, y = 0, the initial nose velocity is -0.083 and the initial rear-point velocity 
is -0.084, the small difference being partially due to asymmetry in the distribution 
of the Lagrangian points and partially due to numerical errors in evaluating the 
integrals. At x = 4.95, the downstream velocity on L is -0.42 relative to the 
upstream velocity a t  the same y. The main difference between figure 5 (c) and figure 
3(c) is that  a sufficiently large portion of the low-speed patch is removed from the 
wall by the anticyclonic eddy, so that the shear flow will reach a statistically stable 
state with no additional eddies. 

The results shown in figures 6 and 7 are explained by the asymptotic analysis in 
$2, which indicates that as H ,  + 0 with fixed finite x, the two interfaces decouple, the 
evolution on the upper one being given by linear theory. With H ,  = 0.1, x, = 2.5 
(figure 6), the upper interface shows the dispersion of the small-amplitude 
disturbance, such as occurs in the flow of a completely stable shear layer over a rigid 
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I f = 1 8  

1 20 

FIGURE 5. The evolution of local instability where there is a compact region of low velocity near 
the wall. H ,  = 0.5, x,, = 5. (a )  N ,  = 75, N ,  = 196. (a) N ,  = 86, N ,  = 234. (c) N ,  = 103, N ,  = 264. 
The last Lagrangian point is at x = 39.5. The time step is T = 0.1. 



Evolution of locally unstable shear $ow near a wall or a coast 91 

1 .o 

1 

FIQURE 6. The ‘stable’ evolution which occurs for small H ,  = 0.1 and x, = 2.5. At t = 16, N ,  = 57, 
N ,  = 209. The disturbance on the upper interface evolves in an essentially linear way. The lowr 
interface is highly nonlinear; e.g. a tip of the low-speed fluid is ejected (t = 16) into the shear layer 
(note the scale break on the ordinate). But this has little effect on the upper interface and no 
anticyclonic eddy forms. 

boundary ( y  = 0). On the lower interface a thin tip of the slow fluid is ejected into 
the lower layer and carried downstream, without much influence on R. 

The behaviour of the lower interface was qualitatively checked by the calculation 
for figure 7,  in which the upper interface is completely removed (from the numerical 
program) and the upstream flow has constant shear from y = 0 to y = CO. For this 
one interface we rescaled using the maximum value of L(x,  0) as the lengthscale (the 
inverse vorticity is still the timescale), and using the initial condition 

cosha(x/x, + l ) ,  - 2x, < x < 0, 
x < -2x,, 

cosha = 2 

1 (3.5) 

(anticyclonic shear extending to y = co). 
I n  this calculation the origin (x = 0) of the coordinate system is fixed (relative to  

the wall), and we took u( - 03,l) = 0, so that the wall velocity a t  x = & co is negative. 
Note that the y = 03 boundary condition in this problem is different from the 
preceding one and, moreover, we only have cyclonic anomalies (underneath L) .  Since 
these anomalies (and their images) cause u(x, 0) to increase with x > 0, we now have 
a fast patch of irrotational fluid on the wall, and therefore this initial state is not a 
complete asymptotic limit to the previous one. But the cyclonic anomalies do 
produce downward motion at the nose (figure 7) and upward motion at the rear, 
thereby causing an ejection of the low-vorticity flow. Although this qualitative 
behaviour of L is similar to figure 6, we now have fast fluid being transported 
upwards thereby producing a momentum flux up the mean gradient. From t = 0 to 
t = 10 the area under L and the area under the L2 curve remained constant to better 
than 1 YO, whereas both these areas are conserved according to the last paragraph in 
$2.4. 

When the initial patch width in figure 5 is reduced to x, = 2.5 with H ,  = 0.5 held 
constant, an unstable region and a large anticyclonic eddy also form (figure 8) as in 

4 F L N  198 
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L 

t 

FIGURE 7. This is similar to figure 6 except that  the upper interface is removed (to y = C O )  and the 
calculation is rescaled (see text). The origin (5 = 0) in this calculation is fixed relative to the wall. 
The important point to note is the ejection of a plume of low vorticity into the overlying 
anticyclonic shear layer, this effect being similar to that in figure 6. 

13.6 

FIGURE 8. Same as figure 5 except x, = 2.5, H ,  = 0 . 5 , N ,  = 91, N ,  = 219. 

figure 5. The reason why the formation time is slightly shorter in figure 8 is that the 
initial interfacial slopes (and Iv(x, 0)l) are larger near the nose and rear points. (Also 
note that the x- and L-scales are different in figure 5c and figure 8.) 

A calculation (not shown) was also made for H ,  = 0.25, x, = 2.5 and the evolution 
was similar to figure 6, especially with regard to the dispersive wavetrain which 
develops on the upper interface. For example, a t  t = 14, the important first trough 
on R is a t  x = 14.3, y = 0.77 which is far downstream from the rear point (at x = 6.2) 
on the lower interface. These particles originally near the upper interface always 
remain far from the wall and do not form an anticyclonic eddy. On the other hand 
the plume [max (L ) ]  on the lower interface extends to a larger y = 0.68 than in figure 
6, but this plume is so thin that it cannot overcome the dispersion effects on R which 
lead to a reduction in max R as t increases. 
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FIGURE 9. Regime diagram for the local instability in figure l (a) ,  E denotes a run in which 
max (L,)  > H,, and a large anticyclonic eddy (E) forms. The symbol S on the other hand, indicates 
that only a dispersive wave forms on the upper interface. 
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FIGURE 10. The downward momentum transport integrated over all x,y in those cases where 

the patch is isolated. 

4. Discussion 
The numerical results are summarized in the regime diagram of figure 9, where 

W,, W,,H,  are the dimensional parameters in figure 1. The symbol E indicates that 
the maximum nondimensional height reached by the lower interface is at least as 
large as y = 1, the undisturbed lower boundary of the free stream. In this case a t  
least one large anticyclonic eddy evolves, bringing fluid from above the inflexion into 
close contact with the wall. The symbol S, on the other hand, indicates an evolution 
in which max (L(z,  t ) )  < 1, and particles on the upper interface remain in the vicinity 
of y = 1 a t  all times. No anticyclonic eddy forms, but a thin plume of irrotational 
fluid is ejected from the downstream side of L into the overlying shear layer where 
it is strained and eventually entrained. 

Figure 10 shows the temporal variation of the non-dimensional average momentum 
transport (equations (2.14)-(2.15)) for the finite-patch models. Because of the 
symmetry of the initial interfacial disturbances, the momentum transport is zero at  
t = 0. At subsequent times the mean momentum transport increases to a maximum as 
the eddy grows, then decreases as the eddy equilibrates and as the source of the 
inflexional instability is removed. The numerical calculations show that the 
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maximum momentum transport increases with patch width and amplitude H,. After 
the anticyclonic eddy reaches maturity and the upper interfacial disturbance starts 
to disperse, the momentum transport changes sign. 

5. Remarks on the spanwise circulation 
In the foregoing work we considered the streamwise effects in a boundary layer, by 

incorporating the effect of the spanwise circulation as an initial condition. Now we 
shall reverse the procedure by neglecting the streamwise variations, and calculate the 
evolution of an initially weak spanwise circulation. The important half of the latter 
will be modelled by a semi-infinite wall jet (or half-jet) intruding into an irrotational 
region, viz. 

U(x, co, t )  = 0, 

vorticity below L = [, 

(5 .3)  

(5.4) 

vorticity immediately below R = - 1. (5 .5)  

For constant B this gives a semi-infinite wall jet flowing from positive x towards 
an irrotational fluid lying outside the upper interface. 

When f = - 1 ,  this problem reduces to the one-interface problem considered by 
Stern & Pratt  (1985), who showed that for large B the nose of R(x, t )  steepens with 
time, reaching a quasi-equilibrium state with O( 1 )  slope. The steepening vorticity 
isopleth amplifies the vertical velocity, and we shall now show that an additional 
amplification occurs when f < - 1 because the two interfaces merge (frontogenesis). 
This effect corresponds to an extreme increase in the x-gradient of vorticity in a 
continuously varying fluid (Stern & Vorapayev 1984). 

The contour-dynamical calculation for this section differs from the previous ones 
only insofar as there is a nose point on both interfaces. The modified program for this 
problem was checked by computing the initial velocities for step functions ( B +  0) in 
R, L, and by comparing the result with an analytic calculation (cf. (2.11 a ,  b ) ) .  For a 
stable jet with c =  -2  and with a rather large B, figure 11 shows a strong 
frontogenetical effect as the nose regions of the two interfaces merge. Figure 12 
suggests that  the nose curvature eventually becomes independent of its initial shape, 
in agreement with the one-interface calculation of Stern & Pratt  (1985), but figure 13 
indicates that the curvature does depend on H,. The final nose speeds in figures 11,  
12, and 13 are -0.67, -0.67, -0.90 respectively. 

A similar effect is seen (figure 14) for the 2ase of the half-jet ( f =  0). At 
t = 12 we again see the remarkable merging of the two interfaces, suggesting that the 
analogous effect in a real fluid may only be limited by viscosity. In any case the 
inescapable conclusion is that initially weak vertical velocities a t  the nose of a 
spanwise intrusion will amplify, thereby lifting relatively low streamwise velocities 
above the wall region, setting the stage for the inflexional instabilities discussed 
previously. (Perhaps a downstream modulation of the latter process would be 
sufficient to initiate the streamwise circulation discussed in this section. and to 
couple the two kinds of two-dimensional mechanisms.) 
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FIGURE 11 .  Vorticity frontogenesis (see text). The label 1015 indicates the lower interface a t  time 
10, 10R indicates the upper interface at  t = 10, lOLR indicates the merged segments at t = 10, and 
similar conventions are used in all following figures. ff, = 0.25, B = 1.5, g = -2. The lower interface 
converges on the upper interface in a coordinate system moving with the nose point (z = 0) of the 
latter. The velocity profile a t  z = + 00 consists of a wall jet with irrotational fluid a t  y = 00 and also 
at  z = - 00. At t = 10,N, = 156,N, = 136. In this, and all the following diagrams, Lagrangian 
points were inserted and deleted automatically a t  each time step (2' = 0.1) to maintain a specified 
spatial resolution. 

L, R 

FIGURE 12. Same as figure 11 except at B = 0.5. Note the coincidence of the two fronts in the 
nose region. 

The final diagram (figure 15) shows what happens in the different case of a full jet : 
5 = + 4 (and H ,  = 0.25, B = 1.5), for which the wall velocity vanishes at x = + CO. At 
t 5 4 the two nose points start to merge but the large cyclonic vorticity (+ 4) near 
y = 0 prevents the lower portion of the fluid from making an anticyclonic turn a t  
x = 0. Instead we have a t  x = 0, t = 16 a finite separation between the noses of the 
two interfaces (together with the instability wave a t  larger x). The implication for the 
spanwise circulation in a real fluid is that vorticity frontogenesis will occur at some 
distance above the wall, and in regions where the vorticity gradient is monotonic. 
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FIGURE 13. Same as figure 12 except a larger H ,  = 0.5. Extreme frontogenesis in the nose is 
again indicated. T = 0.075 and at t = 7.5, N ,  = 160, N ,  = 113. 

FIGURE 14. Vorticity frontogenesis in the half-jet 5 = O , H ,  = 0.25, B = 1.5,T = 0.1. A t  t = 12, 
N ,  = 151, N ,  = 148, and the nose speed is -0.33. 

6. Conclusion 
Although the presence of a rigid boundary tends to stabilize an inflected laminar 

shear layer, a strong finite-amplitude instability can develop when the initial state 
(figure l a )  contains an isolated wall patch with relatively low speed and low 
vorticity. Fluid is squeezed out of the upstream nose as the faster fluid converges on 
it,  and ejected upwards a t  larger x. As the concomitant upper-level ridge propagates 
more rapidly downstream there is an increase in ' local instability ' as (formally) 
measured by the ratio of layer thickness. Thus the propagation speeds on the two 
interfaces equalize and phase lock, with the upper ridge (having anticyclonic 
vorticity anomaly) downstream from the lower ridge (having cyclonic anomalies). 
The anomalies in each ridge cause the other ridge to amplify, and downstream 
troughs are also produced by dispersion. Then the lower-layer ridge approaches the 
upper interface, the amplifying upper-layer trough approaches the wall, and a large 
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FIGURE 15. A full jet: = +4,H, = 0.25,B = 1.5. At t = 16,N, = 87,N,  = 120. The leading nose 
velocity is -0.44, and the trailing nose velocity is -0.35. pu’ote the inflexional instability of the jet 
at t = 16. The main point, however, is that the interfaces do not merge in regions where the 
vorticity changes sign. 

anticyclonic eddy forms in the region of the original inflexion. If W, (figure l a )  is 
large enough (compared with the vertical thickness of the inflected layer) then 
additional eddies may form successively in time and further downstream. 

The regime diagram (figure 9) indicates the conditions under which the evolution 
of the lower interface causes it to make close contact with the free stream by 
attaining a maximum height of y 2 1.  A more detailed calculation of the finite- 
amplitude-regime boundary (i.e. the dashed curve) does not seem warranted at this 
stage because i t  depends on the detailed shape of L,(z,O) as well as (Wl, W,). 
Nevertheless the trend of the boundary seems well established, and we expect the 
curve to level off a t  some small finite W J H ,  below which there is too little fluid 
available for the lower interface to reach y = 1. Unlike the free shear layer, 
restabilization is achieved by the removal of the fluid below the main shear layer. 

For WJH,  = 0.5, W,/H, = 10 (figure 1 a) the temporal maximum of the Reynolds 
stress (figure lo), divided by the patch area (0.5 x 10=5) equals 0.04/5, where the 
unit of velocity is the change across the inflected layer. For an order-of-magnitude 
calculation suppose that this velocity is f of the free-stream velocity F in the 
turbulent flow over a wall, so that the patch average (of the maxt) Reynolds stress 
equals (0.04/5) (+,F)2 = 20 x lOP4F2. According to Hinze (1959, figures 7-14), the 
space-time-averaged Reynolds stress in the lower boundary layer is half the wall 
stress or - 5 x lOP4F2. Thus our calculations indicate that much larger values may 
occur intermittently in connection with inflexional patches. It is hardly necessary to 
mention that our calculations must be placed in proper perspective, with proper 
reservations, when applied to turbulent flow over a rigid boundary. The three- 
dimensional spanwise motions (see $ 5 )  which occur there are necessary to establish 
the inflexional patch assumed in our two-dimensional theory, and very small-scale 
three-dimensional instabilities are also observed on the back side of the large- 
amplitude Kelvin-Helmholtz waves (Lasheras, Cho & Maxworthy 1986). The 
purpose of this paper has been to isolate and explain part of the whole problem. 

Our finite-amplitude-instability calculation may be applicable to the oceano- 
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k 

1.25 
1.15 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0.05 
0.01 
0.001 

C 

0.508 
0.537 
0.619 
0.654 
0.691 
0.730 
0.771 
0.813 
0.858 
0.903 
0.951 
0.975 
0.995 
0.995 

0 

1.092 
1.48 
3.10 
4.24 
5.93 
8.57 

13.0 
21.4 
39.7 
93.1 

386 
766 
399.0 x lo2 
117.0 x lo4 

TABLE 1 .  The neutral wave 

w 
1.25 
0.714 
0.372 
0.300 
0.243 
0.195 
0.154 
0.116 
8.4 x 
5.4 x 
2.6 x lo-’ 
2.6 x 
2.5 x 10-3 
8.0 x 10-4 

graphic problem mentioned in the Introduction, since ‘new ’ large-scale eddies 
appear only intermittently, and in a setting that does not resemble the highly 
unstable laminar current which is usually postulated as a starting point. The 
frontogenetical mechanism discussed in $ 5  also seems relevant because it appears to 
be a consequence of the existence of a quasi-two-dimensional invariant (vorticity), 
and in the ocean this property is attained by the potential vorticity. Since 
temperature, salinity, and density are also quasi-invariants the formation of fronts 
in these properties might occur concomitantly. 

I would like to acknowledge stimulating discussions on this subject with Mr Uwe 
Send a t  the GFD summer school, and financial support by ONR and NSF. 

Appendix. Linear instability theory for a horizontally uniform shear flow 
near a wall 

Consider a shear flow of unit (non-dimensional) vorticity located between y = 0 
and y = 1 with a wall a t  y = - w, with mean velocity g(y) = 1 in 0 > y > - V, and 
with O(y) = 0 in co > y > 1.  Apply infinitesimal perturbationsAof wavenumber k, 
phase speed c ,  and a stream function equal to the real part of +(y) eik(z-ct), where 

(cosh k + A sinh k) e-”(”-’), co > y 2 1 
cosh ky + A sinh ky, 
sinh k(y + V)/sinh Vk, 

lay20 
O > y 2 - V ,  

and where the integration constant A must be chosen such that the downstream 
pressure gra$ientA is continuous a t  y = 1 and y = 0. This requires continuity of 
- (U(y) - c )  kg + $ dU/dy, and thus we get 

- kc(cosh k+ A sinh k+ sinh k+ A cosh k) + (cosh k + A  sinh k) = 0, 
- k( 1 - c )  ( A  - cosh kV/sinh kv) - 1 = 0. 



Evolution of locally unstable shear $ow near a wall or a coast 99 

From these two equations we obtain 

1 
A = cosh kF/sinh kF-- 

k( 1 - c )  ’ 

(A 2) 
1 - w  (1 - e-2k) k cosh k + kw sinh k-sinh k 

= 0, ( l + w  2k I c +  k2 ek( 1 + w )  

w = coth kW. 

As k + O  with W fixed we have w +  I/kW, and the limit of ( A  2)  becomes 
c2-  2c + 1 = 0, which has the double root c = 1 .  On the other hand as + 0 with k 
fixed the limit of ( A  2) becomes c2 - (1 + p) c + p = 0 where /3 = (1  - e-2”)/2k, and there 
are two real roots of this equation. Therefore all finite wavelengths have zero growth 
rate for sufficiently small W. The calculated marginal stability relation (table 1) 
shows that W ( k )  increases from zero as k increases from zero to its cutoff value, but 
for ‘small ’ W the half-wavelength (xk) of the amplifying disturbances is so long that 
for our purpose (viz. figure 1 a )  we may say that small values of W are ‘essentially’ 
stable to infinitesimal-amplitude disturbances. 
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